Path Planning and Optimization for Cuspidal 6R Manipulators Alexander J. Elias and John T. Wen · Rensselaer Polytechnic Institute

Cuspidal robots switch IK solutions without crossing singularities

Classical path planners may fail

2. Feasibility depends on choice of IK solution, but industrial simulators don't return all IK solutions [1] ABB GoFa FANUC CRX-10iA/L FANUC ROBOGUIDE FOR Straight-line task-space path $\frac{\pi}{2}$ Feasible joint path feasible path $\frac{\pi}{2}$ Feasible joint path $\frac{\pi}{2}$ For single-line task-space path $\frac{\pi}{2}$ For single-l

3. IK-Geo: Highly efficient solver finds all IK solutions for any robot using subproblem decomposition^[2]

Fastest solver in our testing

- >40x faster IK for UR5 than IKFast
- Independently verified performance

Robust to singularities

All solutions returned

- Continuous approximate solutions
- Sometimes least-squares solutions

All 6R robots compatible

• Also 7R robots^[3] and parallel robots

4. Found new cuspidal robots with efficient identification method^[1]

Robot cuspidal if algorithm terminates

While nonsingular path not found:

- 1. Pick a random EE pose
- 2. Find all IK solutions with IK-Geo
- 3. Check linear paths among solutions

Compared to previous methods:

- Simpler (no path optimization)
- Faster (using IK-Geo)

5. Graph-based planner finds optimal feasible joint path for a given task path $^{[1]}$

Reduce to shortest path problem in directed acyclic graph (DAG):

- 1. Find all IK solutions for each sample with IK-Geo
- 2. Connect vertices based on threshold
- 3. Weigh edges based on incremental cost
- 4. Find shortest path

Simplest metric: Minimize joint velocity

$$C(\underline{q}(\lambda)) = \left\| \underline{q'}(\lambda) \right\|_2^2 = \int_0^L \left\| \frac{dq(\lambda)}{d\lambda} \right\|^2 d\lambda$$

Other options:

- Joint limit avoidance
- Singularity avoidance
- Repeatability (closed paths)

6. Path optimization finds best rigid-body offset of end effector path $^{[1]}$

- [1] A. J. Elias and J. T. Wen, "Path planning and optimization for cuspidal 6R manipulators," arXiv preprint arXiv:2501.18505, 2025.
- [2] A. J. Elias and J. T. Wen, "IK-Geo: Unified robot inverse kinematics using subproblem decomposition," Mech. Mach. Theory, vol. 209, p. 105971, 2025.
- [3] A. J. Elias and J. T. Wen, "Redundancy parameterization and inverse kinematics of 7-DOF revolute manipulators," Mech. Mach. Theory, vol. 204, p. 105824, 2024.